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AD-TmsH 
PRE FACE 

The objective of the Atmospheric Sciences Laboratory   (ASL)   effort 
within  the Ground Target Signature  (GTS)   program   is to develop 
a total   atmospheric  transmission model   that  takes   into account 
molecular and aerosol   scattering and  absorption.    The  five-parameter 
generalization of  the Zachor molecular absorption  model   originally 
proposed by Gibson and Pierluissi   in   1971   is   in  the process of being 
integrated  into a  comprehensive ASL transmittance model.    This absorption 
model   is  reviewed and compared with  the modified   King's  function 
model   used  in the Air Force Cambridge Research   Laboratory   (AFCRL) 
model   presently being used   for GTS purposes.     Since  further  improve- 
ments need to be made to develop  the five-parameter model   for general 
use,   additional   work to  improve the model   and  refine the computer 
techniques   involved   is  being  done  under contract number DDAD07-73-C- 
0127  at  the University  of Texas at  El   Paso by  Joseph  Pierluissi, 
Leland  Blank,  and  Jerry Collins.    This work  includes applying the 
model   to high   resolution data,  extending the use of the model   to 
real   atmospheric conditions,   applying   inhomogeneous  path  techniques, 
and   improving  the computer program efficiency. 

The authors gratefully  acknowledge  the cooperation and assistance 
of Glenn  A.   Gibson  and Joseph H.   Pierluissi  of  the University of 
Texas at El   Paso.     We  also wish  to acknowledge the  relevant  discussions 
with  John E.   Selby of AFCRL  concerning the application of the modified 
King's  function model.    We especially wish to acknowledge Richard B. 
Gomez  for his  critical   review and  his many helpful   suggestions. 
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INTRODUCTION 

This   is the second   in a series of  reports  to  determine a total   atmos- 
pheric transmittance model   for the Ground Target Signatures  (GTS)  program. 
Gomez and Pierluissi   CG reviewed  the state-of-the-art of calculating 
atmospheric transmission,  and  recommended  that  a generalized  molecular 
absorption model   be  considered  as potentially  the best model   available 
for treating broad band  atmospheric absorption. 

This  report  discusses  and  applies the five-parameter generalization 
of  Zachor's model   [_2^\,  henceforth  referred  to as the FP( five-parameter) 
model.     This  application   is to a   I-km horizontal   path of water 
vapor data  calculated by Wyatt,  Stull,   and Plass  \j5~2 over spectral 
intervals  of   1200 to 2200 cm"1   and  4900 to 5800 cm      with a   resolution 
of 50 cm"  .     To provide  a basis of  comparison,   a modified  King's 
function   (MKF)   absorption model,   used by Air  Force Cambridge  Research 
Laboratories   (AFCRL)   in their total   atmospheric transmission  model 
L~4H,   is applied  to the same path and spectral   intervals  using the 
water vapor data of Burch.  Singleton,   France,   and Williams  [5] degraded 
to a  resolution of 50 cm-'. 

The AFCRL model   was  chosen  as  a basis of  comparison  because   it   is 
used   in GTS applications. 

DISCUSSION  OF THE  FlVE-PARAMETER  MODEL 

Development of the Five-Parameter Model 

The FP band model   discussed   in this paper   is  a quadratic general ization 
of  the four-parameter absorption model   developed  by Zachor [2,   63. 
As originally proposed by Gibson and Pierluissi   \J~\,   it was developed 
by  considering the Zachor model   as the equation of  an elliptic 
cone and writing that expression as a more general   three-term 
polynomial   equation.     The Zachor model   is  a modification of  the 
Mayer-Goody statistical   band  model   for gaseous  transmittance. 
The Mayer-Goody model   is C8,  9]: 

T = exp 

u+2a>J 
CD 



where 

x = transmission 

q =  SU/d =  kU 

U = optical   path   length 

k =  absorption coefficient 

5 = spectral    line  intensity 

d = mean spacing between spectral   I ines 

@ = 2TTY/d =  8 P 
o 

6 =6  calculated at standard temperature and pressure 

Y = spectral   line half-width 

P =  gaseous  broadening pressure 

Eq.   (I) may be rewritten as 

exp 
q^        qB        J 

(2) 

or 

T     =     exp -(- • -2-)-*' 
(kU)       CUP 

(3) 

where C =  6Qk  is  the proportional ity  factor between  UP and  q3  and   is 
frequency-dependent.     The product CUP   is used   instead of q3 because q 
and  0 cannot  be directly measured. 



For U/P«l, the weak-l !ne approximation,  Eq.   (3)   reduces to 

T    - exp(-kU) (.4) 

and  for U/P»l,   the strong-line approximation,  Eq.   (3)   reduces  to 

,CUPN>s 
TS =  exp  [-   C-j-) (.5) 

Combining Eqs.   (3),   (4),  and   (5),   the Mayer-Goody model   may be  re- 
written as 

dm)"2 =   dm   )"2 +  dnx  )" C6) 
W »9 

Zachor C23 noted that this equation may be  regarded  geometrically 
as the  resultant magnitude of two perpendicular  vectors of   lengths 
(In  T  )       and   (In TS>~',   as shown  in Figure   1(a).    Extending this 
geometric   interpretation and applying the cosine  law,   he proposed 
a more general   model   which may be expressed as 

(^  x2    + y2 -  $  xy C7) 

where 

Z =   l/ln    T 

x =   l/U 

y =   l/ln T 

M = 2 cos  9 



(LnsT^) 

( i^Ts) 

Figure   la.    The vector representation of the  Mayer-Goody model 

(U  Tw)-I 

(X^TS)" 

Figure   lb.     The vector representation  of  the Zachor model 



(In T)  is now the sum of two vectors, (In TW)  and (In x )  , whose 
directions differ by a fixed angle 6, as shown in Figure 1(B). The 
value 6 has no effect on the value of T; however, it does control the 
rate of transition between T and T_. The cross term can thus be 
Interpreted as representing the region of intermediate absorption. 

The Zachor formula, when written in the form of Eq. (7), is the 
equation of an elliptic cone. The ellipse is in the xy-plane, and 
the xy term corresponds to a rotation of the ellipse about the z-axis. 
Since M = 2 Cos 6, M will be less than or equal to 2. This restriction 
guarantees that the cone will be elliptic (or parabolic for |M| = 2). 
This comes from the restriction in analytic geometry that A3 < 4A|A2, 

where A| Is the coefficient of x , A2 is the coefficient of y^, and 
A, is the coefficient of xy. 

To use the analytical models described above, one essentially de- 
termines an elliptic cone that best fits the data points (xj, yj, Zj). 
This may be done by using minimization techniques to weight the terms 
of the equation of the ellipse. The coefficients are determined from 
the resulting best fit.  This procedure must then be repeated for 
each frequency, since the parameters are frequency-dependent. 

Using the observations presented above, Gibson and Pierluissi C^H 
proposed a generalized polynomial model which would allow for complete 
flexibility in weiahting the terms of the equation.  The proposed model 
is 

Z2  = B X2 + B Y2 + B XY (8) 
w    s     ws 

where Bw is the frequency-dependent parameter which weights the weak- 
line transmission with respect to the other two terms.  It is not necessar- 
ily  (l/K^), as in the Zachor model. B is the frequency-dependent 
parameter which weights the strong-line transmission terms. Bws is 

the frequency-dependent parameter which weights the transition between 
x and y. These coefficients satisfy the condition B^ <4BWBS. 

In a later paper Pierluissi D0] further generalizes the model and 
describes the general polynomial transmission model as 



Z2     =   B  X2     +  B Y2     +  B,    XY +  BT     X2Y +  B„     XY2     +   ... (9) w s ws 3ws 2ws vy) 

in which the right side of the equation is simply an n-order poly- 
nomial given by the expression 

F(x, y) = f     F B XV (l°> 
n  i  ni 

The first order terms of  Eq.   (10)  correspond to a translation .of  the x- 
and y-axes and may   be  removed  by algebraic methods.     The accuracy 
produced  by the third order and  higher terms  is not needed  for 
general   atmospheric transmittance modeling,  and the   inclusion of  these 
terms  results   in greater complexity of the model   and more computational 
effort.     Eq.   (9)   is therefore truncated  after the  first three terms, 
yielding Eq.   (8).    As more terms are used,  the coefficients   lose 
their physical   meaning. 

As  written,   the Zachor model,   Eq.   (7),  and  the FP model,   Eq.   (8), 
have only two and three explicit parameters,   respectively.    However, 
both  models  use the two-parameter strong-line transmission  function 
proposed  by  King fj IH  for their  representations of T   .     King's 
formula   Is 

T    =   I  -  P{n,  Cnr(n)   (^UP)*5 ]l/n} (M) 

where P(a, x) is the incomplete gamma function 



X 

P(a, x) = [r(a)]"1 J  ta"'e"+dt (I2) 

King developed his strong-line transmission model based on the fact 
that the character of the line spacing is the most important factor 
in the transmittance of overlapping spectral lines. He compared 
the transmittance of the Elsasser model to the transmittance of the 
Mayer-Goody model and found no relationship between the two; however, 
in taking the derivatives of the absorptances of the models with 
respect to the absorber quantity, he discovered a relationship 
which led him to formulate two important assumptions:  (I) The 
absorption derivative of widely spaced overlapping Lorentz lines 
can be expressed as the product of the absorption derivative of 
the lines considered as non-interactino absorbers and an overlap 
factor which involves the interaction of the neighboring lines.  (2) 
For widely spaced Lorentz absorption lines, the overlap factor can be 
expressed as an exponential function in which the power of the argument 
is related to the variance of the line spacing. The assumptions 
form the basis for the derivation of King's formula. 

Eq. (II) has two frequency-dependent parameters, n and C. The 
parameter n is an adjustable strong-line parameter which controls the 
ratio of the variance, a2, and the squared mean of the line spacing, 
d2, for widely spaced, equally intense strong lines, as in the 
probability density function L"6!]: 

|2-= {2nr(2n)/[nr(n)]2}-l (13) 

The Mayer-Goody model   (Poisson-distributed   lines)   is  characterized  by 
unit variance,  while the Elsasser model   (regularly spaced   lines)   is 
characterized  by zero variance.     For Poisson-distributed   lines  (n  =   I), 
Eq.   (13)  gives the correct  result;   however,   for regularly  spaced   lines 

I I 



(n = h),   It gives  a2/d2 =   (4/ir-l )   instead of  zero.     Nevertheless,   King's 
formula,   Eq.   (II),   is  very useful   because   it provides  a continuous 
set of trial   functions  for fitting strong-line data,   and   it  reduces to 
the Elsasser strong-line approximation   for  n  = h and  to the Mayer-Goody 
strong   line approximation  for n =   I.     For n  >   I,   the expression 
represents  clustering of spectral    lines.     Eq.   (II)   is  thus a generalized 
strong-line absorption model   whose   line spacing goes  from complete 
regularity to complete randomness and  to the   limit of clustering   in 
which the spectral    lines are superimposed  upon one another. 

The parameter C  is a  strong-line parameter  related   to the   line 
spacing,  d,  the   line strength,  S,  and the half-width,   y  ,  of the 
spectral    I i nes  by 

2TTY S 
C =  2_ ( 14) 

d2 

With  King's strong-line transmission  function   (Eq.   (II))   incorporated 
into  Eq.   (8),   the proposed model   becomes  a  five-parameter model 
(n,   C,   Bw,   Bs,   Bws).     All   five  parameters  must  be  calculated   for each 
frequency.     The techniques  used  to determine these  parameters will 
be  discussed   in  the next section. 

That  the  FP model    is   indeed  a  very general   and  very  useful   analytical 
model   can  be  shown   in that at   least nine other models can  be derived 
from  it  by  forcing the parameter to certain values  \_\lT\. 

The models that can  be obtained are: 

2 
1. Beer's  Law.    By settinq B    =  B      =0 and B    =   l/k  ,  we obtain 
-kU  — — s ws w 

2. King's  Strong-line Model.     By settinq  B    = B      =0 and B    =   I, 
we obtain  Eq.   (II),   repeated here for convenience. 

x    =   l-P{n,rCnx(n)   (gCUP^l/n} 

12 



3.     Elsasser's Strong-line Approximation.     By  setting B    =  B      =0, 
B    =   I,   and n = 0.5,   we obtain 

x  -   I   -   J-TlH,    (—ft (15) 

=   I   - erf   (-o—> 

4. The Mayer-Goody  Strong-line Approximation.     By setting B    = 
B      =  0,   B    =   iTand  n =" I,   we obtaTn 

ws '     s ' ' 

( 16) 

-  exp  L-(——)  J 

5. The Mayer-Goody  Model .     By  setting Bw£.  =  0,   B    =   I,   B    =   l/k2, 
and n =   I,  we obtain  Eq.   (3),   repeated here. 

T   = exP C" (W   + cTF)J5] 

6.    The Generalized  Mayer-Goody.     By setting B      = 0 and using 
King's expression  for T    with n  variable,  we obtain 

(lnT)~2 = 7T7TO +  <lnt  )~2 (l7) 
(kU)z s 

7.  The Modified Elsasser.  Settinq B  =0 and n = %,   we 
obtai n 



(lnT)~2=    T1^-p>     + [l-erfC^)^"2 (18) 

- 8.     Zachor's Model.     By  setting B    =   I,   B      = M/k,  and B 
l/k   ,  we obta i n 

(lnT)-
2=    J^    +  (Inx  ^-^(in^r1 (19) 

9.  Intermediate Absorption (any model).  Setting B = B = 0, 
we obtai n 

x_ = B,.,„ Inx Inx 
I " DwsM,lwM,ls (20) 

Since these other models can be derived from the FP model, once the 
FP model is computerized, one can, with appropriate fixing of parameters, 
obtain any of the above models for use in the calculation of gaseous 
transmittance. A reduction in the number of parameters will result 
in a decrease of computer time and of required computer storage; however, 
It will also result in a decrease in the accuracy of the model. 

14 



Mathematical Techniques Used to Determine the Five Parameters 

The mathematical algorithms used by Gibson and Pierluissi to determine 
the five parameters will be discussed in this section.  As mentioned 
in the previous section, the parameters are frequency-dependent and 
must be calculated for each frequency.  Ideally, Eq. (8) should be 
minimized, solving for all five parameters simultaneously by using 
alI the absorption data; however, such a technique has not been 
perfected. 

A procedure similar to that used by Zachor C2U was used to determine 
the parameters. First the strong-line parameters, n and C, were 
determined.  Then these values were used in calculating the quadratic 
parameters: B , B , and B .  A simplified flowchart illustrating the 
computer procedures described in this section is shown in Figure 2. 

The procedure for determining n and C is based on the fact that for 
a fixed UP product, such as U/P>>I (the strong-line approximation), the 
absorptance must approach an upper limit of l-xs» where TS is 
the strong-line transmittance. The strong-line parameters can thus 
be determined from the experimental data by plotting log (I-TS) versus 
log (UP) and selecting from these data, points which are dominated by 
strong-line absorptance. These points are then fitted to a surface 
obtained by plotting the log of the theoretical strong-line 
transmission function, TS, given by Eq. (II), versus the log of the 
quantity (CUP) versus the parameter n. The value of Log C may be 
obtained by taking the difference between Log (CUP) and Log (UP) from 
these two plots. The value of n may be obtained directly from the 
displacement along the n-axis. The correct values of n and C are 
obtained when the following expression is minimized: 

1=N 

V     Up. - f(n, D)]2 (21) 

1=1 

15 



( Start  ) 

/ INPUT: Strongline absorption levels (L]_, L^, L-j, L^), absorp^ 
tion concentrations, pressures, initial values, wavelengths / 
and corresponding absorptions / 

-J- 
/OUTPUT:  Record of input data  / 

Initialize Control Variables 

Increment frequency HD 

<D 

Pick out strong absorptances from the different 
absorber concentrations and store in a separate 
array. 

Use Beer's Law 

Figure  2.     Flowchart  of  the  five-parameter model 

16 



1 
Use Iterative technique to vary both n and log C until the change in suc- 
cessive n's and log C's is less than .001 

Set n 

Gh Using final previous value of log C and iterative technique to vary log 
C until change 1n successive log C's is less than .0005. 

Set log C 
Set n 

Use least squares techniques to minimize B„, B., B w     s      ws 

GH no/All data 

V^/-*" Calculate ^  and deviations from original data 

Output: UP product, absorption data, strong line approximation, weak 
line approximation, calculated absorption, deviations. 

C    STOP} 

F1gu re 2 (con. ) 

17 



where D=Log C,  p,  =   log  (I-T,),  f(n,   D)  =   log(P{n,[nr(n) (2CUP/7rP]l/n), 
and N = the number of data points. 

The data used   in the calculation of the strong-l ine parameters were 
computer-selected  by setting  four   levels of absorptance:     L|,   L2, 
L,,  and  LA-     Levels L.   and  L2 were used to determine which data would 
be used   in the strong-line calculations  (see Figure 2).     Levels  L,  and 
L4 were set to exclude values of  absorptance near 0% and   100$, 
which   in general   are questionable.     Small   differences   in these values 
may produce  large errors   in the parameters to be calculated.    These 
levels were predetermined by trial   and error,   and   it was  found that 
the   levels  L,   =  0.5,   L2 = 0.2,   L3 =  0.005,   and  L4 =  0.995 produced 
the best  parameters  for water vapor. 

First the data were checked against L.;   no values  greater  than  L. 
were used.     The data were next checked  against  L.     and   if there were at 
least three data points greater than  L|,   then all   of those  points 
were used   in the calculations.     If there were not three points above 
L|,  then the data were checked with  L2.     If there were three or more 
points above  L~,  then those points were used;  n was then set equal 
to a predetermined set value and  Eq.   (14)  was minimized with  respect 
to D only.    This  was necessary since minimization with  respect to 
n and C was  found to be difficult  under these circumstances Cl3H. 
The selection of a  value of  n was made by a  trial   and error procedure, 
and a value of one was found to produce good parameters.     If  there were 
only one or two  points above L2,  then  the three highest absorptance 
values were used  for the minimization with  respect  to D only.     If 
there were no points above L2,  then  the three highest absorptance 
values were used  for the minimization with  respect  to D only.     If 
there were no points above L2,  the absorption was assumed to be 
weak-Iine.    The points  between L3 and  L2 were then selected  and Beer's 
Law was used.     B    and B      were then set to zero and only B    was 
calculated. 

Since TS   IS  nonlinear  in n  and  D,  the procedure used  to minimize 
Eq.   (14)  was an  iterative nonlinear technique.     A modified Newton- 
Raphson method was used [I4U;  this expression was of the form 

ak+l   = Ak + Mk    ^V (22) 

18 



where g (a.) Is the set of equations obtained by taking the partial 
derivatives of Eq. (14) with respect to n and C, respectively, and 
setting them equal to zero, and M^ is the set of equations obtained 
by taking 

3g(ak) 

3n 

(23) 

and 

9g(ak) 
—3D 

(24) 

The a.'s are 
k 

V 
L"kJ 

k = 0, I, (25) 

Th e matrix obtained for g(a, ) is 

g(ak) = 

i = N _i_ 

7 3f , 
^   3D (pi 1 = 1 

I=I 

f) 

f) 

k = o, I, (26) 



The matrix M^ is obtained by expanding the function f(n, D.) in 
the Taylor series about the point (n, Dj), which makes f a minimum. 
The function can be closely approximated in the region of interest 
by considering only the linear terms in the Taylor series expansion of 
f.  Using this simplifying approximation, we obtain 

V 

i=N 
ST 
L 
i=l 

i=N 

i=l 

I 

]f' 2 

3D 

I     141 3f     dj_ 
3D     9n 

i = N 

y in n 

i=N 

I 
l-l (£1 

k = 0,   I, (27) 

where the symbol J_ indicates that the expression is evaluated at 

the point (n., D.). The technique involved requires making an initial 
estimate of the values of n and D, then making successive guesses 
by incrementing n by no more than 0.1 and D by no more than 0.3 
until successive a. 's are found such that their elements are less 
than 0.0005. When this difference is obtained, Eq. (14) is minimized 
with respect to n and D.  In this procedure n is minimized first, 
and this value is used in minimizing D.  In order for n and D to 
be minimized in this fashion, the initial estimates must be such 
that n and D can be determined within a limited number of iterations, 
which was arbitrarily chosen as 46 in the five-parameter computer 
program. 

20 



For the cases when n was set equal to 1.0 and Eq. (14) was minimized 
with respect to D only, Eqs. (26) and (27) became 

9<ak> 

r i = N 

I 
!=l 

1 

3f   . 
3D   (P" 

- 

-f) 
_ 

0, I, (28) 

and 

M, = 

r  i = N 

£ m 
u M 

0, I, (29) 

in order to determine the matrices for Mk and g(ak)> +he function 
f(n, D) and its partial derivatives with respect to n and D must 
be taken and evaluated. A series approximation method may be 
used to evaluate the incomplete gamma function; however, the function 
converges very slowly when it is close to the value I. For this 
reason the (n, UP) plane was divided up into several areas of 
50 points by 50 points. To approximate the log of the incomplete 
gamma function, a set of general third-order polynomials in n and 
log (CUP) was written in the form 

f(n,   x) =  A.x3    + A„nx2    + ATn2x + A.n3    + ARx2 

2 3 4 5 

+ A nx + An2  + Ax + An  + A 

(30) 

where x =   log   (CUP).     Tabulated  values  for the   incomplete gamma  function 
were used D5U,  and  Eq.   (30)  was fitted to those values by using 
least-squares techniques to determine the coefficients.     These 
polynomials and their partials with  respect to n  and D were used 
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in the calculation of g(a^)   and  M..     A similar polynomial   expression 
for the  incomplete gamma  function was also determined,  since  it 
must be evaluated   in order to  find values  for T        The functions 
were evaluated   in the  regions 0.5<n<3.0 and -4<Jog  (CUP)<4. 
The polynomial   approximations were within 0.001  of the actual   values 
of the  functions. 

After the parameters n and C were determined,  the quadratic parameters 
By, Bs,  and  Bws were obtained by applying   least-squares techniques 
to minimize the weighted  difference between  the theoretical   Zj  and the 
experimental   Zp;   i.e., 

I=N 

)     W(T*)[B x.2  + B y.2  + B    x.y.   - Z?2]2 (3|) 
/    • I W    I SI WS    I     I I y-J'' 

1=1 

where W(T[) = T* (Inx*) , and t¥ ls the measured value of the trans- 
mission. This weighting function was postulated from the assumption 
that the transmittance is a random variable with a probability density 

dm) (32) 

The variance of this density is proportional to [T* (Inx*) "} 
In least-squares methods the weighting function is conventionally 
inversely proportional to the variance CI6H- The expression for 
W(T*) is thus justified on this premise. 

The procedure for minimizing Eq. (31) involves taking the partial 
derivatives with respect to Bw, Bs, and B^ and setting them equal 
to zero. This yields three equations to be solved for these 
parameters: 

i=N 

^ _ W(T*)X.2(X.2BW + X.Y.BWS + Y.
2B - Z?2) = 0 (^3a) 

i: 
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!=N 

)     W(T?)Y.2(X.2B    +  X.Y.B      + Y.2B    -  Z*2)   =  0 (33b) 
/   • II I       W I     |     WS is I 

i = l 

1=N 

/     W(T?)X.Y.(X.2B    + X,Y,BWe + Y.2B    - Z*2 )  =  0 (33c) / , I      I    i      i     w i    i    ws is i UJt' 
i=l 

The value of x.   is  determined  from  l/U and  the value of y.   is 
determined  from the third-degree polynomial   approximation for the 
incomplete gamma  function.    The above set of equations   is easily 
solved  at each frequency for the three quadratic parameters. 

APPLICATION TO WATER VAPOR DATA AND COMPARISON  TO AFCRL  MODEL 

The FP model   was applied to the water vapor absorption data of Wyatt, 
Stull,  and  Plass C33 over absorption bands of   1200 to 2200 cm"'   and 
4900 to 5800 cm-1   with a  resolution of 50 cm  ',     The transmittances 
for the   I-km horizontal   atmospheric path  were calculated.     The 
selection of this  path  resulted  in an equivalent water vapor 
concentration of 2 pr-cm.    The  results of this application are 
represented by the solid   lines  in Figures 3 and 4. 

The AFCRL model,   described by McClatchey et a I.   [43,  employs a 
modified  King's  function  (MKF)   as  its molecular absorption model. 
It  is an empirical   model   specifically tailored to fit a specific set 
of data  for water vapor,   carbon  dioxide,  ozone,  and a combination 
of uniformly mixed gases   (oxygen,  methane,   carbon monoxide,   and 
nitrogenoxide).    Since the AFCRL model   has found use   in GTS applications, 
a comparison between  it and the FP model   was made. 

King [J IH attempted to write a general   expression for atmospheric 
transmittance  (T)  which,  under certain conditions,   would approach 
either the strong-line or the weak-line approximation of either the 
Elsasser model   or the Mayer-Goody model.    He proposed  that  x take 
the general   functional   form 
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WATER CONCENTRATION • 2Pr-cm 

FP  Model 
AFCRL   Model 
760 mm Hg 

00 
1200 1333 1467 1600 1733 1867 

WAVE  NUMBER,   CM"1 

2000 2133 

Figure 3.     Comparison of  the  FP model   with   the  AFCRL absorption  model 
over the spectral   interval   1200-2200 cm"'  with a  resolution of 50 cm" 
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Figure 4.     Comparison of the  FP mode!  with  the AFCRL absorption  model 
over the spectral   interval   4900-5800 cm      with  a  resolution of 50  cm" 
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T     (o)  -   ftC(u)   ALPn] (34) 
Av 

where 

T. (u) = transmittance averaaed over the spectral interval 
Av r 

C(u) = frequency-dependent absorption coefficient 

AL = optical   path   length 

P = effective broadening pressure 

n =  frequency-dependent parameter 

The King model   is therefore a two-parameter model,  with  n  and C 
as the frequency-dependent  parameters.     In the case of  the MKF 
model,  a mean value for n was determined graphically for a  range of 
frequencies,   thus  reducing  it to a one-parameter model   Cl7]. 

In order to compare equivalent water concentrations  for a   I-km 
horizontal   path,   the AFCRL  tropical   atmosphere model   was  chosen. 
The results are represented by the dashed   lines  in Figures 3 and 4. 

In the   1200-2200 cm      band   in  Figure 3,  we note that the two models 
predict generally similar though not  identical   results.     In the 
region between   1850-2200 cm"  ,  the two models differ significantly. 
In  Figure 4 the two models differ   in the region 4900-5100 cm"'.     In 
order to understand this  difference,  the  input data must be examined. 

Synthesized   input data and experimental ly measured  data,   both  from 
Burch  et a I.  [5],  were used  in the development of  the MKF model. 
The data of Wyatt et a I.  C3] were obtained  theoretically by calculating 
the absorptions due to spectral   lines corresponding to transitions 
between  various vibration-rotation energy   levels.    Discrepancies 
between experimental   and theoretical   data may  be due  to Wyatt's 
application of  the equivalent symmetric   rotor approximation to the 
highly asymmetric water molecule C4],  since  in the theoretical   cal- 
culations   it was  necessary to assume that the water molecule was a 
symmetric   rotator.     Both  sets of  data are shown   in   Figures 5  and  6 
(obtained  from Wyatt et al.)   for  1200-2200 cm      and 4900-5800 cm"   , 
respect ively. 
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Figure 5.     Comparison of the theoretical   calculations of  the transmittance 
of the 6.3 y band with  the experimental   measurements of Burch et a I. 
The theoretical   values have been  averaged over a 20 cm-1   interval.* 

* Originally  Figure   I   from C3]. 
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Figure 6.     Comparison of the theoretical   calculations  of  the transmittance 
of the   1.87 p  band with  the experimental   measurements of Burch et a I. 
The theoretical   values have been  averaged over a 20 cm-1   interval.t 

t Originally  Figure 2  from C3]. 
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Figure 7.     Comparison of the  FP model   to theoretical   data of Wyatt et a I 
and comparison  of  the  AFCRL model  to empirical   data of Burch  over the 
spectral   interval   1200-2200  cm-1  with  a resolution of 50 cm-1. 
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A second comparison was then made between the  results of  the models 
and their respective  data.    The conditions  for this comparison 
are as shown   in Figures  5 and 6.    The  results  are shown  in  Figures 
7  and 8,  where the solid   line  represents the  results  of the FP model 
and the dashed   line that of the MKF model.    The dots show the 
original   Wyatt et a I.   data points,   and the squares the published 
data of Burch et_ aj_.    Tables  I   and  2 show the absolute deviation 
and  give  the RMS  deviation of all   points over each   interval   for 
both  models.    The RMS  deviation  for the   1200-2200 cm"1   band   is   1.9 
x   10-3  for the FP model   and 71.3 x   I0"3  for the MKF model;   for the 
4900-5800 cm-'   band,   it  is   I .7 x   I0~3  for the five-parameter  model 
and  48.2 x  \0~     for the MKF model.    The  FP model   reproduced   its 
data within  0.5% accuracy,   while the MKF model,   with  the exception 
of  three points,   reproduced the publ ished  data of Burch et a I. 
to within   \0%. 

CONCLUDING REMARKS 

The addition of  a fifth parameter to generalize the Zachor model, 
combined with the employment of high  speed  digital   computers to 
accurately  determine the parameters of the model   by   least-squares 
techniques and non-linear  iteration methods,  makes the five-parameter 
molecular absorption model   a highly accurate  and  the most general 
analytical   formula currently available.     In contrast to empirical 
models,   the  five-parameter model   also has  the advantage of  not 
being  restricted  to any particular set of  data.     Consequently, 
the  five-parameter molecular absorption model    is  to be   integrated 
into the Atmospheric Sciences  Laboratory's  (ASL)   total   atmospheric 
transmittance model. 

In the  1200-2200 cm      band,  the five-parameter model   and  the modified 
King's   function  model   produce comparable though   not   identical 
results;   in the   1850-2200 cm"'   region,   they  differ markedly.     In 
the 4900-5800 cm"'   band  they also predict  similar  results except   in 
the 4900-5100 cm      region,   where they again  differ markedly.    The 
results of the comparison between  the  five-parameter model   and   its 
input data and the modified  King's  function model   and the published 
data of Burch et al.   indicate that  the former more accurately 
reproduces   its   data.    To provide  a more specific  comparison,  the 
two models  need  to be developed and  appl ied  to the same set of 
data over various  atmospheric paths. 
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TABLE   I 

COMPARISON OF THE PREDICTIONS OF THE  FlVE-PARAMZTER ABSORPTION MODEL 
AND THE MODIFIED KING'S  FUNCTION  ABSORPTION  MODEL WITH THEIR RESPECTIVE 
INPUT DATA OVER THE   1200-2200 cm"1   WATER VAPOR BAND 

Wave Wyatt FP Absolute Burch MKF Absolute 
Number et al. 

Data 
Model Dev iation Data* Model* Deviation* 

1200 .972 .975 .003 .98 .96 .02 
1250 .954 .955 .001 .94 .91 .03 

1300 .781 .779 .002 .87 .83 .04 
1350 .518 .521 .003 .60 .50 .10 

1400 .299 .302 .003 .06 .20 .14 
1450 .155 . 155 .000 .10 .13 .03 

1500 .047 .046 .001 .01 .01 .00 
1550 .118 .1 14 .004 .00 .01 .01 

1600 . 165 .165 .000 .12 .36 .24 
1650 .073 .070 .003 .00 .01 .01 

1700 .052 .051 .001 .01 .01 .00 
1750 .082 .083 .001 .02 .03 .01 

1800 .123 . 122 .001 .10 .16 .06 
1850 .289 .290 .001 .30 .37 .07 

1900 .435 .437 .002 .52 .58 .06 
1950 .557 .559 .002 .65 .64 .01 

2000 .691 .692 .001 .77 .77 .00 
2050 .773 .773 .000 .89 .88 .01 

2100 .850 .849 .001 .94 .94 .00 
2150 .915 .914 .001 .96 .94 .02 

2200 .957 .958 .001 .99 .98 .01 

FP Model   RMS Deviation =   I.9 x  10 
-3 

,-3 
MKF Model   RMS Deviation = 71.3 x  10 

*0nIy two significant figure accuracy was available  for these data, 
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TABLE  2 

COMPARISON OF THE  PREDICTIONS OF THE  FIVE-PARAMETER ABSORPTION  MODEL 
AND THE  MODIFIED  KING'S   FUNCTION  ABSORPTION  MODEL WITH  THEIR RESPECTIVE 
INPUT DATA OVER THE 4900-5800 cm-1   WATER VAPOR BAND 

Wave Wyatt FP Absolute Burch MKF Absolute 
Number et al . Model Dev iation Data* Model* Deviat ion* 

Data 

4900 .978 .979 .001 1 .00 1.00 .00 
4950 .976 .976 .000 1 .00 .99 .01 

5000 .965 .965 .000 .99 .97 .02 
5050 .934 .935 .001 .97 .96 .01 

5100 .858 .856 .001 .90 .85 .05 
5150 .720 .717 .003 .71 .67 .04 

5200 .571 .572 .001 .59 .45 .04 
5250 .554 .556 .002 .42 .38 .04 

5300 .41 1 .407 .004 .30 .22 .08 

5400 .520 .521 .001 .44 .41 .03 
5450 .599 .599 .000 .40 .35 .05 

5500 .679 .680 .001 .63 .51 .14 
5550 .770 .777 .002 .81 .76 .05 

5600 .899 .899 .000 .94 .91 .03 
5650 .970 .971 .001 .97 .97 .00 

5700 .993 .994 .001 .99 .97 .02 
5750 .995 .997 .002 1 .00 .98 .02 

5800 .998 .998 .000 1 .00 .99 .01 

FP Model   RMS  deviation =   I.7 x   10 

,-3 
MKF Model RMS deviation = 48.2 x 10 

*OnIy two significant figure accuracy was available for these data. 
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Currently  developmental   work  is being done for the ASL GTS modeling 
program  (Contract Number DDAD07-73-C-0I27)  at the University of 
Texas at  El   Paso to extend the  five-parameter model   to real 
atmospheric conditions.    This work consists of  the application 
of   inhomogeneous  path  techniques to the transmission calculations 
and the   inclusion of transmission parameters   for all   important 
gaseous  atmospheric  constituents.     The computer program efficiency 
will   be maximized and the model  will   be appl ied to h igh   resoIution 
data. 

Because of  the   large number of computations  necessary  to  compute the 
five  parameters,   the model   is best  used  over a   limited  spectral 
interval.    However,   if high  accuracy  is  not  required or  if computer 
time  and storage  is   limited,  the completely  developed program 
will   have the capability of setting one or more of the parameters 
to a  fixed  value.     This will   result   in  reducing the five-parameter 
model  to one of the nine models mentioned. 
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